extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xS3).1(C2xC4) = C23:C4:5S3 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).1(C2xC4) | 192,299 |
(C22xS3).2(C2xC4) = S3xC4.D4 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 24 | 8+ | (C2^2xS3).2(C2xC4) | 192,303 |
(C22xS3).3(C2xC4) = M4(2).21D6 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 48 | 8+ | (C2^2xS3).3(C2xC4) | 192,310 |
(C22xS3).4(C2xC4) = (C2xD12):13C4 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).4(C2xC4) | 192,565 |
(C22xS3).5(C2xC4) = C2xC12.46D4 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 48 | | (C2^2xS3).5(C2xC4) | 192,689 |
(C22xS3).6(C2xC4) = M4(2).31D6 | φ: C2xC4/C2 → C4 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).6(C2xC4) | 192,691 |
(C22xS3).7(C2xC4) = D6:C4:5C4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).7(C2xC4) | 192,228 |
(C22xS3).8(C2xC4) = D6:C4:3C4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).8(C2xC4) | 192,229 |
(C22xS3).9(C2xC4) = C8:6D12 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).9(C2xC4) | 192,247 |
(C22xS3).10(C2xC4) = C42.243D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).10(C2xC4) | 192,249 |
(C22xS3).11(C2xC4) = C42.185D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).11(C2xC4) | 192,268 |
(C22xS3).12(C2xC4) = D6:C8:C2 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).12(C2xC4) | 192,286 |
(C22xS3).13(C2xC4) = Dic3:M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).13(C2xC4) | 192,288 |
(C22xS3).14(C2xC4) = C3:C8:26D4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).14(C2xC4) | 192,289 |
(C22xS3).15(C2xC4) = M4(2).19D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).15(C2xC4) | 192,304 |
(C22xS3).16(C2xC4) = C12:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).16(C2xC4) | 192,397 |
(C22xS3).17(C2xC4) = C42.31D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).17(C2xC4) | 192,399 |
(C22xS3).18(C2xC4) = (C2xC4):6D12 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).18(C2xC4) | 192,498 |
(C22xS3).19(C2xC4) = (C2xC42):3S3 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).19(C2xC4) | 192,499 |
(C22xS3).20(C2xC4) = C24.24D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).20(C2xC4) | 192,516 |
(C22xS3).21(C2xC4) = (C2xD12):10C4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).21(C2xC4) | 192,547 |
(C22xS3).22(C2xC4) = D6:C4:7C4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).22(C2xC4) | 192,549 |
(C22xS3).23(C2xC4) = (C22xC8):7S3 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).23(C2xC4) | 192,669 |
(C22xS3).24(C2xC4) = C24:33D4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).24(C2xC4) | 192,670 |
(C22xS3).25(C2xC4) = C24:21D4 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).25(C2xC4) | 192,687 |
(C22xS3).26(C2xC4) = D6:C8:40C2 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).26(C2xC4) | 192,688 |
(C22xS3).27(C2xC4) = M4(2):26D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).27(C2xC4) | 192,1304 |
(C22xS3).28(C2xC4) = M4(2):28D6 | φ: C2xC4/C2 → C22 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).28(C2xC4) | 192,1309 |
(C22xS3).29(C2xC4) = D6:C42 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).29(C2xC4) | 192,225 |
(C22xS3).30(C2xC4) = D6:C4:C4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).30(C2xC4) | 192,227 |
(C22xS3).31(C2xC4) = C8xD12 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).31(C2xC4) | 192,245 |
(C22xS3).32(C2xC4) = D6.C42 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).32(C2xC4) | 192,248 |
(C22xS3).33(C2xC4) = C8:9D12 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).33(C2xC4) | 192,265 |
(C22xS3).34(C2xC4) = D6.4C42 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).34(C2xC4) | 192,267 |
(C22xS3).35(C2xC4) = C3:D4:C8 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).35(C2xC4) | 192,284 |
(C22xS3).36(C2xC4) = D6:2M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).36(C2xC4) | 192,287 |
(C22xS3).37(C2xC4) = D12:C8 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).37(C2xC4) | 192,393 |
(C22xS3).38(C2xC4) = D6:3M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).38(C2xC4) | 192,395 |
(C22xS3).39(C2xC4) = C42.30D6 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).39(C2xC4) | 192,398 |
(C22xS3).40(C2xC4) = C4xD6:C4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).40(C2xC4) | 192,497 |
(C22xS3).41(C2xC4) = C24.23D6 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).41(C2xC4) | 192,515 |
(C22xS3).42(C2xC4) = D6:C4:6C4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).42(C2xC4) | 192,548 |
(C22xS3).43(C2xC4) = C8xC3:D4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).43(C2xC4) | 192,668 |
(C22xS3).44(C2xC4) = C24:D4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).44(C2xC4) | 192,686 |
(C22xS3).45(C2xC4) = C2xC8oD12 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).45(C2xC4) | 192,1297 |
(C22xS3).46(C2xC4) = C2xD12.C4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).46(C2xC4) | 192,1303 |
(C22xS3).47(C2xC4) = S3xC8oD4 | φ: C2xC4/C4 → C2 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).47(C2xC4) | 192,1308 |
(C22xS3).48(C2xC4) = C22.58(S3xD4) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).48(C2xC4) | 192,223 |
(C22xS3).49(C2xC4) = D6:(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).49(C2xC4) | 192,226 |
(C22xS3).50(C2xC4) = C42.282D6 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).50(C2xC4) | 192,244 |
(C22xS3).51(C2xC4) = C4xC8:S3 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).51(C2xC4) | 192,246 |
(C22xS3).52(C2xC4) = C42.182D6 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).52(C2xC4) | 192,264 |
(C22xS3).53(C2xC4) = Dic3:5M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).53(C2xC4) | 192,266 |
(C22xS3).54(C2xC4) = S3xC22:C8 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).54(C2xC4) | 192,283 |
(C22xS3).55(C2xC4) = D6:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).55(C2xC4) | 192,285 |
(C22xS3).56(C2xC4) = S3xC4.10D4 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).56(C2xC4) | 192,309 |
(C22xS3).57(C2xC4) = C42.200D6 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).57(C2xC4) | 192,392 |
(C22xS3).58(C2xC4) = C42.202D6 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).58(C2xC4) | 192,394 |
(C22xS3).59(C2xC4) = C12:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).59(C2xC4) | 192,396 |
(C22xS3).60(C2xC4) = C24.59D6 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).60(C2xC4) | 192,514 |
(C22xS3).61(C2xC4) = C4:(D6:C4) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).61(C2xC4) | 192,546 |
(C22xS3).62(C2xC4) = C2xD6:C8 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).62(C2xC4) | 192,667 |
(C22xS3).63(C2xC4) = D6:6M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).63(C2xC4) | 192,685 |
(C22xS3).64(C2xC4) = C2xC42:2S3 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).64(C2xC4) | 192,1031 |
(C22xS3).65(C2xC4) = C2xC4:C4:7S3 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).65(C2xC4) | 192,1061 |
(C22xS3).66(C2xC4) = S3xC42:C2 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).66(C2xC4) | 192,1079 |
(C22xS3).67(C2xC4) = C22xC8:S3 | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).67(C2xC4) | 192,1296 |
(C22xS3).68(C2xC4) = C2xS3xM4(2) | φ: C2xC4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).68(C2xC4) | 192,1302 |
(C22xS3).69(C2xC4) = S3xC2.C42 | φ: trivial image | 96 | | (C2^2xS3).69(C2xC4) | 192,222 |
(C22xS3).70(C2xC4) = S3xC4xC8 | φ: trivial image | 96 | | (C2^2xS3).70(C2xC4) | 192,243 |
(C22xS3).71(C2xC4) = S3xC8:C4 | φ: trivial image | 96 | | (C2^2xS3).71(C2xC4) | 192,263 |
(C22xS3).72(C2xC4) = S3xC4:C8 | φ: trivial image | 96 | | (C2^2xS3).72(C2xC4) | 192,391 |
(C22xS3).73(C2xC4) = S3xC2xC42 | φ: trivial image | 96 | | (C2^2xS3).73(C2xC4) | 192,1030 |
(C22xS3).74(C2xC4) = C2xS3xC4:C4 | φ: trivial image | 96 | | (C2^2xS3).74(C2xC4) | 192,1060 |
(C22xS3).75(C2xC4) = S3xC22xC8 | φ: trivial image | 96 | | (C2^2xS3).75(C2xC4) | 192,1295 |