Extensions 1→N→G→Q→1 with N=C22xS3 and Q=C2xC4

Direct product G=NxQ with N=C22xS3 and Q=C2xC4
dρLabelID
S3xC23xC496S3xC2^3xC4192,1511

Semidirect products G=N:Q with N=C22xS3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C22xS3):1(C2xC4) = S3xC23:C4φ: C2xC4/C2C4 ⊆ Out C22xS3248+(C2^2xS3):1(C2xC4)192,302
(C22xS3):2(C2xC4) = C2xC23.6D6φ: C2xC4/C2C4 ⊆ Out C22xS348(C2^2xS3):2(C2xC4)192,513
(C22xS3):3(C2xC4) = (C2xC4):9D12φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3):3(C2xC4)192,224
(C22xS3):4(C2xC4) = C24.60D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3):4(C2xC4)192,517
(C22xS3):5(C2xC4) = C24.76D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3):5(C2xC4)192,772
(C22xS3):6(C2xC4) = C24.35D6φ: C2xC4/C2C22 ⊆ Out C22xS348(C2^2xS3):6(C2xC4)192,1045
(C22xS3):7(C2xC4) = C42:9D6φ: C2xC4/C2C22 ⊆ Out C22xS348(C2^2xS3):7(C2xC4)192,1080
(C22xS3):8(C2xC4) = C42:13D6φ: C2xC4/C2C22 ⊆ Out C22xS348(C2^2xS3):8(C2xC4)192,1104
(C22xS3):9(C2xC4) = C2xC4xD12φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3):9(C2xC4)192,1032
(C22xS3):10(C2xC4) = C2xDic3:4D4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3):10(C2xC4)192,1044
(C22xS3):11(C2xC4) = C2xDic3:5D4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3):11(C2xC4)192,1062
(C22xS3):12(C2xC4) = C4xS3xD4φ: C2xC4/C4C2 ⊆ Out C22xS348(C2^2xS3):12(C2xC4)192,1103
(C22xS3):13(C2xC4) = C2xC4xC3:D4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3):13(C2xC4)192,1347
(C22xS3):14(C2xC4) = C2xS3xC22:C4φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3):14(C2xC4)192,1043
(C22xS3):15(C2xC4) = C22xD6:C4φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3):15(C2xC4)192,1346

Non-split extensions G=N.Q with N=C22xS3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C22xS3).1(C2xC4) = C23:C4:5S3φ: C2xC4/C2C4 ⊆ Out C22xS3488-(C2^2xS3).1(C2xC4)192,299
(C22xS3).2(C2xC4) = S3xC4.D4φ: C2xC4/C2C4 ⊆ Out C22xS3248+(C2^2xS3).2(C2xC4)192,303
(C22xS3).3(C2xC4) = M4(2).21D6φ: C2xC4/C2C4 ⊆ Out C22xS3488+(C2^2xS3).3(C2xC4)192,310
(C22xS3).4(C2xC4) = (C2xD12):13C4φ: C2xC4/C2C4 ⊆ Out C22xS3484(C2^2xS3).4(C2xC4)192,565
(C22xS3).5(C2xC4) = C2xC12.46D4φ: C2xC4/C2C4 ⊆ Out C22xS348(C2^2xS3).5(C2xC4)192,689
(C22xS3).6(C2xC4) = M4(2).31D6φ: C2xC4/C2C4 ⊆ Out C22xS3484(C2^2xS3).6(C2xC4)192,691
(C22xS3).7(C2xC4) = D6:C4:5C4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).7(C2xC4)192,228
(C22xS3).8(C2xC4) = D6:C4:3C4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).8(C2xC4)192,229
(C22xS3).9(C2xC4) = C8:6D12φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).9(C2xC4)192,247
(C22xS3).10(C2xC4) = C42.243D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).10(C2xC4)192,249
(C22xS3).11(C2xC4) = C42.185D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).11(C2xC4)192,268
(C22xS3).12(C2xC4) = D6:C8:C2φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).12(C2xC4)192,286
(C22xS3).13(C2xC4) = Dic3:M4(2)φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).13(C2xC4)192,288
(C22xS3).14(C2xC4) = C3:C8:26D4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).14(C2xC4)192,289
(C22xS3).15(C2xC4) = M4(2).19D6φ: C2xC4/C2C22 ⊆ Out C22xS3488-(C2^2xS3).15(C2xC4)192,304
(C22xS3).16(C2xC4) = C12:2M4(2)φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).16(C2xC4)192,397
(C22xS3).17(C2xC4) = C42.31D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).17(C2xC4)192,399
(C22xS3).18(C2xC4) = (C2xC4):6D12φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).18(C2xC4)192,498
(C22xS3).19(C2xC4) = (C2xC42):3S3φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).19(C2xC4)192,499
(C22xS3).20(C2xC4) = C24.24D6φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).20(C2xC4)192,516
(C22xS3).21(C2xC4) = (C2xD12):10C4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).21(C2xC4)192,547
(C22xS3).22(C2xC4) = D6:C4:7C4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).22(C2xC4)192,549
(C22xS3).23(C2xC4) = (C22xC8):7S3φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).23(C2xC4)192,669
(C22xS3).24(C2xC4) = C24:33D4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).24(C2xC4)192,670
(C22xS3).25(C2xC4) = C24:21D4φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).25(C2xC4)192,687
(C22xS3).26(C2xC4) = D6:C8:40C2φ: C2xC4/C2C22 ⊆ Out C22xS396(C2^2xS3).26(C2xC4)192,688
(C22xS3).27(C2xC4) = M4(2):26D6φ: C2xC4/C2C22 ⊆ Out C22xS3484(C2^2xS3).27(C2xC4)192,1304
(C22xS3).28(C2xC4) = M4(2):28D6φ: C2xC4/C2C22 ⊆ Out C22xS3484(C2^2xS3).28(C2xC4)192,1309
(C22xS3).29(C2xC4) = D6:C42φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).29(C2xC4)192,225
(C22xS3).30(C2xC4) = D6:C4:C4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).30(C2xC4)192,227
(C22xS3).31(C2xC4) = C8xD12φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).31(C2xC4)192,245
(C22xS3).32(C2xC4) = D6.C42φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).32(C2xC4)192,248
(C22xS3).33(C2xC4) = C8:9D12φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).33(C2xC4)192,265
(C22xS3).34(C2xC4) = D6.4C42φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).34(C2xC4)192,267
(C22xS3).35(C2xC4) = C3:D4:C8φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).35(C2xC4)192,284
(C22xS3).36(C2xC4) = D6:2M4(2)φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).36(C2xC4)192,287
(C22xS3).37(C2xC4) = D12:C8φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).37(C2xC4)192,393
(C22xS3).38(C2xC4) = D6:3M4(2)φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).38(C2xC4)192,395
(C22xS3).39(C2xC4) = C42.30D6φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).39(C2xC4)192,398
(C22xS3).40(C2xC4) = C4xD6:C4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).40(C2xC4)192,497
(C22xS3).41(C2xC4) = C24.23D6φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).41(C2xC4)192,515
(C22xS3).42(C2xC4) = D6:C4:6C4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).42(C2xC4)192,548
(C22xS3).43(C2xC4) = C8xC3:D4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).43(C2xC4)192,668
(C22xS3).44(C2xC4) = C24:D4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).44(C2xC4)192,686
(C22xS3).45(C2xC4) = C2xC8oD12φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).45(C2xC4)192,1297
(C22xS3).46(C2xC4) = C2xD12.C4φ: C2xC4/C4C2 ⊆ Out C22xS396(C2^2xS3).46(C2xC4)192,1303
(C22xS3).47(C2xC4) = S3xC8oD4φ: C2xC4/C4C2 ⊆ Out C22xS3484(C2^2xS3).47(C2xC4)192,1308
(C22xS3).48(C2xC4) = C22.58(S3xD4)φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).48(C2xC4)192,223
(C22xS3).49(C2xC4) = D6:(C4:C4)φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).49(C2xC4)192,226
(C22xS3).50(C2xC4) = C42.282D6φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).50(C2xC4)192,244
(C22xS3).51(C2xC4) = C4xC8:S3φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).51(C2xC4)192,246
(C22xS3).52(C2xC4) = C42.182D6φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).52(C2xC4)192,264
(C22xS3).53(C2xC4) = Dic3:5M4(2)φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).53(C2xC4)192,266
(C22xS3).54(C2xC4) = S3xC22:C8φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).54(C2xC4)192,283
(C22xS3).55(C2xC4) = D6:M4(2)φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).55(C2xC4)192,285
(C22xS3).56(C2xC4) = S3xC4.10D4φ: C2xC4/C22C2 ⊆ Out C22xS3488-(C2^2xS3).56(C2xC4)192,309
(C22xS3).57(C2xC4) = C42.200D6φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).57(C2xC4)192,392
(C22xS3).58(C2xC4) = C42.202D6φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).58(C2xC4)192,394
(C22xS3).59(C2xC4) = C12:M4(2)φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).59(C2xC4)192,396
(C22xS3).60(C2xC4) = C24.59D6φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).60(C2xC4)192,514
(C22xS3).61(C2xC4) = C4:(D6:C4)φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).61(C2xC4)192,546
(C22xS3).62(C2xC4) = C2xD6:C8φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).62(C2xC4)192,667
(C22xS3).63(C2xC4) = D6:6M4(2)φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).63(C2xC4)192,685
(C22xS3).64(C2xC4) = C2xC42:2S3φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).64(C2xC4)192,1031
(C22xS3).65(C2xC4) = C2xC4:C4:7S3φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).65(C2xC4)192,1061
(C22xS3).66(C2xC4) = S3xC42:C2φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).66(C2xC4)192,1079
(C22xS3).67(C2xC4) = C22xC8:S3φ: C2xC4/C22C2 ⊆ Out C22xS396(C2^2xS3).67(C2xC4)192,1296
(C22xS3).68(C2xC4) = C2xS3xM4(2)φ: C2xC4/C22C2 ⊆ Out C22xS348(C2^2xS3).68(C2xC4)192,1302
(C22xS3).69(C2xC4) = S3xC2.C42φ: trivial image96(C2^2xS3).69(C2xC4)192,222
(C22xS3).70(C2xC4) = S3xC4xC8φ: trivial image96(C2^2xS3).70(C2xC4)192,243
(C22xS3).71(C2xC4) = S3xC8:C4φ: trivial image96(C2^2xS3).71(C2xC4)192,263
(C22xS3).72(C2xC4) = S3xC4:C8φ: trivial image96(C2^2xS3).72(C2xC4)192,391
(C22xS3).73(C2xC4) = S3xC2xC42φ: trivial image96(C2^2xS3).73(C2xC4)192,1030
(C22xS3).74(C2xC4) = C2xS3xC4:C4φ: trivial image96(C2^2xS3).74(C2xC4)192,1060
(C22xS3).75(C2xC4) = S3xC22xC8φ: trivial image96(C2^2xS3).75(C2xC4)192,1295

׿
x
:
Z
F
o
wr
Q
<